АРТАГАНА́ЛЬНАЯ СІСТЭ́МА,

1) мноства {xn} ненулявых вектараў у эўклідавай (гільбертавай) прасторы, для якіх скалярны здабытак (xn, xm) = 0 пры n ≠ m. Калі модуль кожнага вектара роўны 1, то сістэма {xn} наз. артанармоўнай. Поўную артаганальную сістэму наз. артаганальным базісам. Адпаведна вызначаецца і артанармоўны базіс.

2) Сістэма каардынатаў, у якой каардынатныя лініі (або паверхні) перасякаюцца пад прамым вуглом. Звычайна карыстаюцца дэкартавымі, палярнымі, эліптычнымі, сферычнымі, цыліндрычнымі артаганальнай сістэмай каардынатаў.

3) Сістэма мнагаскладаў {Pn(x)}, n = 0, 1, 2, ..., якія на адрэзку [a, b] з вагой g(x) задавальняюць умовам артаганальнасці ∫​ba Pn(x)Pm(x)g(x)dx = 0 /n≠m/, пры гэтым ступень кожнага мнагасклада Pn(x) супадае з яго індэксам n. Выкарыстоўваюцца ў задачах матэм. фізікі, тэорыі выяўленняў груп, вылічальнай матэматыкі і інш. 4) Сістэма функцый, n = 1, 2..., якія на адрэзку [a, b] з вагой p(x) задавальняюць умовам артаганальнасці: ∫​ba φn(x)φ*m(x)p(x)dz = 0 пры n≠m, дзе * — знак камплекснай спалучанасці. Напр., сістэма трыганаметр. функцый ½, cos nπх, sin nπx (n = 1, 2, ...) — артаганальная сістэма на адрэзку [-1,1] з вагой 1. Выкарыстоўваецца для рашэння задач, напр., спектральнага аналізу ў тэорыі ваганняў, акустыкі, радыёфізікі, оптыкі.

В.А.Ліпніцкі.

т. 1, с. 504

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)